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Generalization of the Dirac Equation Admitting 
Isospin and Color Symmetries 
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Received March 19, 1986 

One possible generalization of the Dirac "square root" procedure 0~, O ~ = D~t Dd 
is presented, based on the explicit introduction of chiral symmetry, which 
generates a set {d} of symmetry-constrained Dirac fields DdtPd =0 admitting 
isospin and color. A self-consistent discussion is given of the basic geometrical 
construction, the field equations, and their relationship to chiral symmetry, 
isospin, and color, and of the construction of the Lagrangian, including the 
interaction gauge fields. The correspondence of the theory with the standard 
SUe(3 ) x SU~(2)• Uv(1) formulation for quarks and leptons is shown. 

1. I N T R O D U C T I O N  

The rapid development  o f  elementary particle physics in the last decade 
has presented us with a better defined p a n o r a m a  of  this field. It is now 
accepted that  the building blocks can be taken to be quarks and leptons 
and their interaction (gauge) fields. It is not  surprising, then, that  this is 
reflected in the titles o f  recent publicat ions [for  example,  the books  by 
Huang  (1982), Close (1979), Field (1979), Okun (1982), and Halzen and 
Martin (1984)]. 

A family o f  elementary particle fields is now known to be composed  
o f  a lef t -handed neutrino,  a right- or lef t -handed electron, and the (assumed 
lef t-handed) quarks. Recent  analysis o f  strong interaction experiments 
makes it plausible that  pari ty is not  conserved in strong interactions, and 
in that  case one would conclude that quarks could only be found  in a 
well-defined helicity state, which, because o f  what  is already known f rom 
weak interactions, will most  probably  be the lef t-handed state. 
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In the case of quarks it has been found advantageous to assume exactly 
three colors [Greenberg (1964); see also Greenberg (1982)] and the addi- 
tional rule that only "colorless" states can be seen experimentally. 

The gauge interaction fields should fit the previous description, and a 
complete theory is expected to explain other properties, such as confinement, 
asymptotic freedom, and charges, and eventually, provided the dynamics 
is complete, should make it possible to compute masses, absolute decay 
ratios, etc. 

The purpose of the present paper is to derive a unified theoretical 
framework which will also clarify the existence of families and provide a 
basis for grand unification. 

Our starting point will be left-handedness considered as a basic fact 
and as such we will incorporate it in the wave equation itself, instead of 
selecting one particular solution to the standard Dirac equation. We will 
be able to do this for a massless neutrino; then the equation we will obtain 
will automatically ensure that neutrinos will be left-handed and massless. 
We obtain similar equations for left-handed fields to represent quarks and 
we will find that there are two ways of doing this, each of which can be 
realized in three different, but equivalent, forms, which we will then identify 
with the prototypes of the previously hypothetical u and d quarks in their 
three different colors. Quarks, being confined, therefore lose the absolute 
meaning of chirality. The use of the same procedure for the electron will 
nevertheless allow for right-handed electrons, too. We discuss the basic 
properties of these fields, their extension to other families of elementary 
particle fields, and their ganging properties, to arrive at the concept of 
charges (fractional and integer), weak charges, color charges, and a basic 
collection of interaction gauge fields, which will then provide a basis for 
both electroweak and grand, unification. 

At the end of this paper deal with the problem of asymptotic freedom 
and confinement within the present theory and a definition of elementary 
particle fields and of the observable (simple or composite) free elementary 
particles. The composite elementary particles, mesons and baryons, require 
the existence of correlation lengths of the same order of magnitude as the 
particle radii. The paper is divided into four main sections, which in fact 
could be presented independently, but since they support each other in a 
systematic manner, we have chosen to include them together. 

The first part develops the mathematical framework needed to study 
the fields that can exist in physical space-time. Here, then, space-time is 
the basic notion for the descriptions of physical phenomena and not a 
secondary concept [which it could in fact be if a different philosophy of 
presentation were used, with matter fields as primary entities, as in the 
approach of Marlow (1982, 1984)]. In the next part we give a geometrical 
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definition of the de Broglie phase, and study the consequences that follow 
if rotations in a reference space R ~ are quantized (R ~ corresponds to the 
use of complex algebra in the description of phenomena in the physical 
space-time R1'3), In the part that follows, the Dirac equation is presented 
in multivector form in order to have a geometrical guide to generalizing it 
in (complex algebra) space-time. The generalization of the Dirac equation 
is made and the concept of symmetry-constrained dirac fields (diracons) is 
introduced. The remainder of the paper is devoted to the development of 
the theory of diracons, showing that they have the properties and symmetries 
we expect of leptons and quarks and their interaction fields. 

2. VECTORS AND SPINORS IN COMPLEX SPACE-TIME 
AND THEIR SUBSPACES 

2.1. Vectors 

The multivectors are generated by the antisymmetric, Grassmann, outer 
product A of a basis set {y~} in N dimensions 

")lAB = ")/A A "YB = �89 - -  ~IB~tA) ( 1 )  

where 

YA = Y,,,...a and YA = ( - - Y , ) ( - - % , )  " " " ( - -YJ , )  (la) 

Also YA = ~'x...~. 
The corresponding Clifford algebra is constructed using the Grassmann 

algebra and an inner (dot) product, 

"YA " "YB = I (')IA ~/B + ')IB~A) ( 2 )  

to define the total, or geometric, product: 

The metric of space-time R l'a (/. = 0, 1, 2, 3) is defined through the 
inner product 

&.~ -- %.. ~/~ = diag(1, -1 ,  -1,  -1)  (4) 

If the multivector algebra C N is considered as the complexifiction of 
R m ' n ( N  = m + n ) ,  we require the concept of absolute value square IVAI 2= 
~'A " Y~, (which is not restricted to positive values), where y~, is a multivector 
with all c o e f f i c i e n t s  being the conjugate of those of "YA. We can write formally 
for the complexification ~c - C 4 of the space-time algebra 

~ c =  ~ + i ~  = ~ + ~ , ;  ~ * n = ~ R ,  ~t* = - - ~ i  (5) 

= ~ + +  ~ _ ;  ~+  = ~ + ,  ~ _  = - ~ _  (6) 
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Also, 9_  = Yo 9+.  The even subalgebra 9§ - ~c corresponds to the standard 
(three-dimensional) space. Also, if Y5 = 3'o~23, ~ = @~ + Y s ~  is the main 
U(1) operation of the algebra. ~x corresponds to the set {scalar + vectors + 
three-dimensional space planes}. 

We can construct projection operators PA with any of the multivectors 
7A: 7~ = 1 (except YA = 1), which divide all elements into subsets (or com- 
ponents), which are the A . . . .  [P~ = (1 + "YA)/2] and A o d d [ P  A = (I - 'YA)/2]  

parts: 
+ - -  - -  + + § -t- + 

P A P A  = P A ,  , P A  P A P A  = P A P A  = 0, PAPA = PA + PA = 1 
(7) 

For an algebra of dimension N the number p of independent PA is 
p = integer part of (N/2) .  

All multivectors are operators on themselves and on their spinors. The 
best-known examples are 70, generating the parity inversion P; 7123, the 
time inversion T; 3'o~, the Lorentz boosts ~ ;  3'~, the space rotations ~ ;  Ys, 
the duality transformation D; and i3'~, the chirality projection. 

The pseudoscalar unit is Y5 = 3 ' ~ e ~ / 4 !  in space-time R ~'3, but it 
is simply i ( =  x/s]  ") in R ~ 

~ can be regarded both as the complexification of the space-time 
multivector algebra or as a five-dimensional space whose even subalgebra 
corresponds to spacetime, as shown in Section 2.3.4. 

Table I. Subspaces Nested As Even Subalgebras in the Complexification of Spacetime ~c a 

Dimensions Spacetime multivectors Smallest 
matrix Spinor 

N Symbol S V BiV TriV TetraV PentaV representation space 

0 R 1 R(1) Real 
numbers 

1 C 1 i I = 712 C(1) Complex 
numbers 

2 ~ 1 eh=Th3 712=e12 R ( 2 ) = H +  R-Pauli  
spinors 

3 ~c 1 7~ ~ = 7ol 3'~; 75 = 7 ~  C(2) = H C-Pauli 
spinors 

4 ~ 1 7 ~  = 7 ,~ ~/~u ~ / ~ " r  7 5  = 7 0 1 2 3  H 2 = C+(4) Dirac 
spinors 

5 ~c  1 7A = i2 7~' 7Al~ 7ABC 7AaCD i 2 = i C(4) Dirac 
spinors 

all2 is the set of block diagonal and block antidiagonal matrices with nonzero blocks corre- 
sponding to the (complex) Pauli matrices H. The R(n )  are real n x n matrices, the C ( N )  
are complex n x n matrices. 7., = {7123, 3'o, 701, 702, 3'03}. Capital  letter indices run from 1 
to 5. Greek letter indices run from 0 to 3. Latin letter indices run from 1 to 3. 
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The subspaces ~ and C in Table I are not the restrictions of  standard 
space ~ ~ R 3'~ to two or one dimensions. They are the multivectors of, 
respectively, ~ ~ R ~ and C ~ R ~ 

2.2. Spinors 

We define spinors as left (right) modules of  multivectors; Keller et al. 
(1986) present spinors as the basic mathematical  entities to construct a 
vectorial space, in an approach similar to Marlow's (1982, 1984) study of  
relativity from quantum theory. We will define the spinors of  any complete 
set of  2 N multivectors, for example, @c, as a vectorial space ~f of dimension 
2 p [ p  ---- integer part  of  ( N / 2 ) ]  with the closure property 

if X ~  and M ~ c ,  then M X ~  (8) 

and for the dual spinor space ~*  

if X * ~ *  and M ~ ,  then x t M c ~ *  (9) 

in such a way that we obtain @c from the "outer"  spinor product XX* ~ @~ 
and the " inner"  spinor product  X~ Xx = Coa, with C~x a complex number  
taken to be 6 ~  in Sections 2.3.1 and 2.3.2. I f  

m = m ~ x ~ x ~  (10a) 

then closure is proven thus: 

MXx = M"~X.X*~ X, = C~A M"~X. = X~ ~ ~ (10b) 

and correspondingly for the X*. a ~*- The M "~ are (a particular) matrix 
representation of the multivector Clifford algebra M ~ @,. 

2.3. Mathematical  Properties 

2.3.1. Classification of ~f~ c Spinors 

For complex space-time the multivector iy5 plays a central role in the 
algebra; for this reason it is customary to define the main projectors QR 
and QL and name the two spinor subspaces generated by the Q on the 
spinor space 5f~ c left-handed L amd right-handed R, such that 

~ c  =.~R +~L (11) 

For @c = complex space-t ime with dimension N = 5, the number  of  
basic spinors is 2 p, with p = integer part of  ( N / 2 ) =  2; then we need two 
projection operators A, which will be either the chiral representation A = (iys 
and iy~2) or the standard representation, where massive particles have 
already been defined, with A = (iyl: and Yo)- The spinors will carry n = 2 p = 4 
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double indexes or, as customary,  a single index a taking 2 e values (a  = 
1 . . . .  , 2 P ) .  

The commonly  employed  projectors are the chirality projectors:  

QR/L = (1 + i3"s)/2 (12) 

the mass projectors 

and the spin projectors 

o r  

and 

o r  

m + / _ = ( l •  (13) 

St/~ = (1 • i3'13'2)/2 (14) 

The relations" used to construct  the starting multivectors will be 

!/o i1/sXL = --( 3"OXL) = --i3"5(1/oXL) (15) 

3'0 i3" s XR = + (1/O X R  ) = -- i3"5(1/o X R  ) 

(i1/5)(i3",2XL)=i3"12i3"sXL=--(i3"12XL) 

(16) 

(17) 

(Xrch X Zch -- X~.r X Sch) e 
ch 

(20) 
t t ~ iO o 

3'0 --- ~ (XsLX SR + XsRX SL) e 
$ 

In  this representat ion 012 = 0o = Os = O. 
From the commuta t ion  and ant icommutat ion  relations with 3's and 

3'~2 the vector basis set is found  to be 
t t t 5" 

3"0 ~- X.tLX'[R + X~kLX~,R "~ X'~ RX~ L "~- XSRX~,L 
"t 

3"1 = --X~CLX,LR -- X,LLX~R t * -~- X t  RX.],L'~ X,[RX'[ L 
(21) 

3'2 = i(--XcLX~R + X*LX~R t * + X '~RXSL--  X ~ , R X ? L )  

y 3  = _Xt~R + X~t,R * t + X~RX~L--X~,RX;L 

and 

(i3"5)(iT12XR) = i1/12 i1/sXR = +(i3'12Xn) (18) 

In the following, ch = {L, R}, S = {1', ~}, and m = {+, -} .  

2.3.2. The Elements o f  ~c As  a Linear Combination o f  Spinor 
Products XX* e ~c 

In  the spin chiral representat ion we can construct  i3'5 as 

iy5 --- E (XsnX*sR - XsLX*sL) e '~ (19) 
S 
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The scalar unit of the algebra should be written 

I=Y Xs,~h X S,~h 
S ch 

2.3.3. Matr ix  Representations 

If we define the column matrix of  the basis X~ ~ 5f and the row matrix 
of the X] ~ * ,  the multivectors will be represented by the coefficients 
obtained from (21) and (10) a s  ]/A->M~ ~3, the usual matrices used in 
quantum mechanics. 

The "standard" matrix representation of quantum mechanics corre- 
sponds to the choice of yo and iy~2 as projection operators and the corre- 
sponding spinors 

YoXs+ = Xs+ and yoXs-  = - X s -  (22) 

2.3.4. The Mos t  Commonly  Used Subspaces o f  C 4 and o f  R 1"3 

First require the five basis vectors of @c in the form (R ~ 

'Yv = {i3/123, iYo, iyox, iyo2, i~03} (23a) 

and the @c multivector algebra 

~c = {1, y~, y,v, Y . . . .  Y . . . . .  i} (23b) 

in order that its even part corresponds to @ = R1"3. 
The standard reduction chain of even subalgebras 

is straightforward (Table I); ~ and ~ share the same spinor basis. In our 
system ~ and ~ have two independent representations; they use either 
the spinor basis (XCL, X+L) or (X~R, X~R) (usually called dotted or undotted)~ 
The spinor basis of C 1 and R ~ is trivial. 

It is important to emphasize here that all rotations in our representation 
of @c are quantized in the standard formulation of quantum mechanics 
(Keller, 1985) and that changes in the spinor basis X~-'X~ + e~x~ corre- 
spond to changes, using (10), in the multivector space. In general e~ = e~ (x). 

2.4. Covariant Vector and Spinor Derivatives 

Following Hestenes (1966), define a differential operator E2i by 

[~ic~ = Oid~ (24) 

where ~b is a scalar and [~  maps scalars into scalars. For a vector field yj 
k Diyj = -Li j  Yk (25) 
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and for multivectors A and B 

E3i ( A B )  = ([2,A) B + AE2iB (26) 

[],  (A+  B) = E3~A +E2~B (27) 

In general, if a = aj 3/, then 

E3~ a = (O,aj + akL k) 3, i (28) 

Hestenes (1966) uses this operator to discuss problems in general 
relativity [see also Hestenes and Sobczyk (1984) in this context]. 

For our spinor spaces ~ and ~§  we can define 

E],X ~ = K ~ X  ~, [~,X ~+ = - K ~ X  ~+ (29) 

where the K~ are related to the L k using the (representation-dependent) 
expansion (10) of the 3k ~,tk . ~. ~* = , '~ /3X X �9 

3. ELEMENTARY PARTICLES AND THEIR INTERACTIONS 

3.1. The Multiveetor Basis of  the Dirae Form of the Theory of Elementary 
Particles 

We have constructed in the preceding section a mathematical system 
for spinors and multivectors in physical space-time. We found it useful to 
enlarge it to a five-dimensional space ~c from a representation point of 
view: the basic spinor products X~X~ are combined, under the field of the 
complex numbers, to obtain the basic tetrad 3',; it was just natural to 
introduce the "complex" elements represented by i3'o, i3'123, i3'ol, i3"o2, and 
i3"o3 as a basis 3"a for ~c. The pentad 3"A with metric 

GAB = 3"a" 3'B = diag(-1,  -1 ,  -1 ,  -1 ,  -1 )  

had as bivectors 3"AB: 

{3"AB: 3'2B =--1}={3'5, 712, 3"23, 3'3X} (30a) 

and 

{3'AB: 3'2B = 1}={3'j, 3 " O j k : j a n d k = l , 2 , 3 }  (30b) 

The set (30a) generates rotations in @c, whereas the set (30b) generates 

Postulate L All rotations in ~c are quantized. 

hyperbolic transformations. 
We can find a physical reason for using a complex space-time 

framework if we explore the consequences of the following postulate: 
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The quantization of the rotations 0o = 27rL~ in the spacelike planes Yu 
corresponds to our standard quantization Lq = nh of angular momentum 
L u. The rotation S in the (abstract in space-time) plane ys corresponds to 
the de Broglie hypothesis if physical linear momentum p is mapped into a 
space-time three-vector 

D ~ D D 
=P Y~; Y~=--Y~Ys (31) 

which we will call the geometrical momentum. This mapping is a generaliz- 
ation of the Gibbs construction of polar e~ and axial vectors e~ - ej x ek, but 
it differs in behavior because D Y~ = 7.Y5, the axial vectors of relativity, do 
change sign under a reference frame inversion; moreover, Y. and y O are 
both members of the odd multivector algebra of @. The position x (standard) 
space-time vector x-- x~y .  such that the outer product 

x ^ p ~  P)Y5 (32) 

is the (dual of the) action Se. The inner product is the (dual of the) angular 
momentum (in units of Ys)- The action is a scalar, which, according to our 
postulate, is quantized: 

5 ~ = x .  P +  ~b(x) = xUp~, + ~b(x) = nh 

Here ~b(x) is a phase angle corresponding to a gauge transformation. 
In the following we will write the trivector linear momentum as OY5 or 

pO =pl.  
The simple and compact form that our choice of the basis YA of ~c 

and the Postulate I allow for quantization is, besides the fact that ~ = @~ven, 
our main justification for considering ~c as a five-dimensional space, 
isomorphous, but not equal from the geometrical point of view, to the 
complexification of the space-time multivector algebra 9. 

3.1.1. The Multivector Dirac Equation 

An observer in reference system S~ (~ ' )  associates an energy-momentum 
vector p(p') to an electron (in fact to any "elementary" particle of mass m0) 

P~Yl3 = P'~Y" (33a) 

where the basis vectors of  b ~' and 6e are related through a Lorentz transfor- 
mati+on 

y ,  = ~ y ~ - l ;  ~ - ,  = ~ - 1 ~  = 1 (33b) 

Observer ~ '  is taken to be that where P ' =  mocy~; then postmultiplying 
(33) by Ze, we obtain an equation in multivector form relating the particle's 
system to the observer's system 9~ 

p ~ y ~  = mo C~yo (34a) 
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Introduce (see Hestenes, 1966) the Schrfdinger operator/3 ~ 

~t3~= hOt~l =pt3s ' with 12= -1  (34b) 

to obtain the multivector Dirac equation 

- Yt38~3~ = mo C~yo I (34c) 

where h = 1 and I is some rotation plane. Hestenes (1966, 1975) proposes 
I = y12, but for the analysis of the rest of this section we need I to commute 
with all bivectors according to our choice I= Y5 given by Postulate I. As a 
consequence, rest mass will not be a primitive concept, but the result of 
the interaction between left- and right-handed fields (see below). 

The general solution 5( = LQo to the multivector equation (34), where 
Q0 = A exp( - Ip  �9 x /h ) ,  can be "gauged" 

5g~ q~ = A' exp{-I[p �9 x +  (h (x)]/h} (35) 

if the differential operator is generalized to a covariant derivative y~ 0" --> 
y . D  ". In (35) the more general gauge "angle" is 

(h(x) = ~b~oalar (X)+ Ys &PS(X)+ Y.Y~ 0"~l~(x) (36) 

The scalar part is usually interpreted as corresponding to the elec- 
tromagnetic field; the pseudoscalar part we interpret (see below) as corre- 
sponding to the weak and color fields, and the bivector part to the gravita- 
tional field (see Keller 1984, 1985). That is, the interaction fields are given 
as boundary data to represent both the rest of the physical world and the 
physical effect of the particle on itself. As usual, the electromagnetic interac- 
tion appears as a (complex) phase factor, which will produce an "extra" 
energy-momentum 0"e-~+l = (eA./c)e-I6; the A~ are the components of 
the usual electromagnetic field vector. The weak and color fields produce 
an extra vector-"axial"  vector energy-momentum and the gravitational field 
changes the local, fiducial, frame y .  -~ y~(x). The gravitational interaction 
arises because, in order to compensate such a gauge transformation, a 
vierbein is needed (Keller, 1984) 

f~ = (fOe-Oa)~ ' ~ o o o =f. f ,~;  g ~ = f ~  (37) 

where the fo  are locally Lorentzian tetrads, 

0 , - c ~  ,-/3 g~ = g,*t~J~J ,. = [ge-2~n].~ (38) 

defining a (gauge-invariant) gravitational "field" 

1~ v v c/ q~.=O~l)"+O f ~ - 8 ~ . O  I I .  (39) 
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which will obey, for self-consistency, the "field" equation 

D2c~ = 4 G T r ( T - � 8 9  (40) 

with T the energy-momentum stress tensor of  the total sources. The origin 
of  the color and of the electroweak interactions between different fields will 
be discussed below. 

The standard form of the Dirac equation is obtained (see Casanova, 
1976) using a spinor u (composite in our theory) such that 3'oU = u and 
lu = iu, to define ~ u  = qJ and ~3'olu = -iqJ; here ~0 is now a particular spinor 
projected out of  ~ ,  

i3"~ O~qJ = m o c ~  or Dq, = - imoctP,  D 2 =O~,O ~" (41) 

In our theory the choice I=  3'5 in Postulate I is the only one allowing 
the choice (36) of the gauging. But the usual (column) spinors cannot 
simultaneously be eigenspinors of  3'o and 3'5 (remember 7o3"5 = -3'53'o); then 
in our formulation, for massive particles, we need a more general spinor, 
representing a collection of  fields. 

There are two main possibilities in our spinor system to represent the 
collection of  spinor fields X~ ) of  composite particles: (1) as a matrix u 
consisting of rows of X~ ) or (2) as a supercolumn �9 of X~ ). Each of these 
possibilities has its own advantages. The practical use of  u is that it can be 
operated on the right by the elements of  3"A (if U contains four columns or 
less in the 4 x 4 representation of ~c). The use of  the column �9 is standard 
in most of  the elementary particle literature. 

In space-t ime the composite wave function u can be symbolically 
ot dl + dt X written u = aa ,x  X~, where the linear combination of diracon fields a ~ d, 

is placed by X + (a  = 1 , . . . ,  4) in the a th  column of u. This is a possible 
procedure to construct the massive electron wave equation in (34) corre- 
sponding to that used by Casanova (1976) to study the baryon and meson 
multiplets. 

The standard procedure of  constructing a supercolumn spinor will be 
used below (see also Keller, 1985) to give an explicit formulation of 
SU(2) x U(1) electroweak interactions, SU(3)color chromodynamics,  and a 
unified presentation of SU(3) • SU(2) x U(1) in terms of the gauging (36) 
of  the diracon fields. In this theory I=  3'5 in equation (34) will be used, 
corresponding to a plane of  @c in (23). 

The mass term will appear  (as usual) as an interaction between the 
right- and left-handed parts of  the electron fields. Introducing first the 
Casanova (composite) spinor u: 3/5 u = iu, then the projection ~ u  d = t~ d will 
be made and afterward the mass term will be introduced to recover the 
standard Dirac equation (because 3'0 and 3'5 cannot have simultaneous 
eigenspinors, since they do not commute). 
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3.2. A Generalization of the Dirac Equation 

For a massless particle D~o=0.  The tbo obeys the Klein-Gordon 
equation with general solution qb: 

0~ 0~'~ = 0 [or -0~ 0~'qb = (m0 c)2q b] (42) 

from which the Dirac solution is obtained using the Dirac operator Do = 
y~, 0" to project it out, 

~bo = Doqb [or tpo=(Do+moci)d)] (43) 

We will now use multivectors to generalize (41) and to develop the theory 
of symmetry-constrained Dirac particles (Keller, 1982a, b, 1984, 1985). For 
this purpose we generalize the Dirac construction to a differential operator 
D valued in the (complex) multivector algebra ~c: 

DD* = D*D = 0~0~ (44) 

The Klein-Gordon equation operator (c = h = 1) 

(0~0~ + m 2) = ( D* + mi)( D -  mi) (45) 

requires - D * m  + m D  = 0; that is, either {"A": D* = D and m ~ 0 (Dirac's)) 
or {"B": any D obeying (44) if m = 0}. 

Let us restrict ourselves to case B (massless particles) and a D where 
we change (one or) several of the vectors y ,  into a more general element 
Ya. A hint comes from the special role of iy5 in elementary particle physics 
and from the general solution qb above. Then, if we define a set d of 
coefficients {t~} for the construction of a diracon operator Dd, 

Do=y~Ot.._>Dd = { c o s ( n + t a ) E +  d ~ )  2 i yss in (n+t , ) -~  y,O ~ (46) 

o r  

Da = ad (/X) y~ 0" = O~y~; 0~ =-- ad (/~)0 ~ (47) 

With the choice of n and ta~ integers, we obtain a set of diracon massless 
fields with definite chiralty iy5 Cd = +qJa. In that case ad ( /z)= • or + iy5 

d provided we also restrict t ,  = 0 or 1, in order not to mix different chiralties. 
Each Dd is characterized by the family index n and the particle field 

type set { t~} occurring in ad (/-~). The solutions to the massless Kle in-Gordon 
equation (42) projected for a particular diracon field (46) are explicitly 
given by the immediate integration of the symmetry-constrained Dirac 
equation (Keller, 1982, 1984), 

DaUb a =0;  D,] = a,](/~)y~, 0~" ; qJd = D~qb (48) 
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as 

~o = B exp(Ip~ x.) ;  p~ =- ad (tz)p ~ (49) 

with x~ = x ~g~,. 
Before proceeding further, we must first allow for the gauging of (48) 

and (49). The wave function can be gauged by a phase angle ~bd (x) if the 
"free" particle operator (47) is extended to the covariant derivative 

Dd= 0 - I -~  A~(x)  y~, (50) 

to obtain the gauged solutions of the generalized Dirac equation 

~0(x) = B exp{l(p~ x~ + ~bd (x)]} (51) 

with 

A ~  (x) = A~,sealar (x) q- AdP',pseud . . . .  lar (X) i')/5 

+ A~/3,t . . . . .  (x) ")/c~/3 (52) 

and the multivector phase angles, generalizing the de Broglie phase, 

~D d (x) : ~/~d, scalar(X) -~- ~d, pseud . . . .  lar(X) iT5 

-~ ~)d, afl,t . . . . .  (X) y~fl (53)  

Because both the coefficients ad (/~) in (49) and the multivector ~bdcommute 
with I= ys, in the following we will replace I by its eigenvalues +i. 

These solutions can be better arranged in families corresponding to a 
d given value of n, with left-handed chirality (for t~ = 0, 1) and a correspond- 

d ing set of antifamilies, with the negative quantum numbers n and t~, with 
right-handed chirality, as shown in Table II. Here a special collection of 
diracon fields has been made which will be useful (see below) for asigning 
a symmetry and name in accordance with the usual SU~(3) x SU(2) • U(1) 
standard theory classification. 

The phase factors ~ba (x) in equation (51) will allow the "interaction" 
and a resulting "transformation" of each of the basic diracon fields (48) 
among themselves [according to a U(1) scheme or grouped in sets with 
SU(2) or SU(3) schemes]; it will result that a full understanding of any 
one of the diracon fields and their identification with observed elementary 
particles can only be obtained if all particles are considered together. If we 
study each family by itself, in a first approximation, and consider the right- 
and left-handed electron fields together, we obtain a Spin(8) scheme similar 
to that discussed by Smith (1985), where it is shown, after some parametriz- 
ation, to provide a sound description of observed elementary particle fields. 
In the rest of this paper we will develop from (46), (48), and (50) a basic 
physical scheme of the actual observable particles. 
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Table II. Allowed Sets of Symmetry-Constrained Quantum Numbers {t.}a and {t~'d = ta~ + n} 
for Chiral Fields Corresponding to the Electron Family (n = -1), Satisfying the Generalized 

Dirac Equation DdqJ d = 0 a 

t o t~ t 2 t 3 t o t~ t~ t~ Charge Isospin Color Symbol Name 

0 0 0 0 -1 -1  -1  -1 -1  -1 - -  e- Electron 

2 1 2 2 1 0 1 1 +2/3 1 r u r Up quark 
2 2 1 2 1 1 0 1 +2/3 1 b u b 
2 2 2 1 1 1 1 0 +2/3 1 g ug 

0 0 1 1 -1 -1  0 0 -1/3 0 r d r Down quark 
0 1 0 1 -1 0 -1  0 -1/3 0 b d b 
0 1 1 0 -1  0 0 -1 -1/3 0 g dg 

2 1 1 1 l 0 0 0 0 0 - -  l, e Neutrino 

aThe quantum numbers n, t a , and operator Dd are defined in equations (46)-(48) in the text. 
The negative value of n corresponds to the choice of e- as reference. The charges are given 
by the average value (t~+ t~ + t~)/3 t~ as described by the explanation of (56) in the text. The 
isospin pairs are connected by a change in the t~, such that It d - ta'l = (2, 1, 1, 1) rood 2, and 
the color triplets by a change in the t~ such that t d - t d'= t d ' -  t d . 

The  phys i ca l  o r ig in  o f  i sosp in  is the  set o f  d i r a c o n  fields d wi th  

coeff icients  a n ( p )  in  (48). T h e  g r o u p i n g  o f  N d i r a c o n  fields,  d = 1 , . . . ,  N, 

in  a subse t  gives rise to the  S U ( N )  s y m m e t r y  wi th  f u n d a m e n t a l  r ep resen ta -  
t i on  ( H e r m i t i a n )  mat r i ces  2~a, as s h o w n  expl ic i t ly  in  the  fo l lowing  sect ions.  

This  g r o u p i n g  wil l  a l low the  i n t r o d u c t i o n  o f  a n  i sosp in  fo rm o f  the  gauge  
A 

fields A ~ --> A " a T a .  

4. C H I R A L  G E O M E T R Y  T H E O R Y  O F  I S O S P I N .  L A G R A N G I A N  
F O R M U L A T I O N  O F  T H E  T H E O R Y  O F  D I R A C O N S  

A fo rma l  p r e s e n t a t i o n  o f  the  d y n a m i c s  o f  s y m m e t r y - c o n s t r a i n e d  D i r ac  
par t ic les  or  d i r a c o n s  c a n  be  g iven  in  te rms  o f  a L a g r a n g i a n  for  the  co l l ec t ion  
o f  par t ic les .  We  will  d e d u c e  this  L a g r a n g i a n  f rom the  e q u a t i o n s  of  the  

p r e c e d i n g  sec t ion  a n d  show tha t  it c o r r e s p o n d s  to the  p o s t u l a t e d  s t a n d a r d  
f o r m u l a t i o n  o f  g r a n d  un i f i ed  theor ies ,  as desc r ibed ,  for  example ,  in  Close  

(1979),  F ie ld  (1979),  O k u n  (1982),  a n d  H a l z e n  a n d  M a r t i n  (1984). 
T a b l e  I I  is use fu l  for  a n  overal l  p r e s e n t a t i o n  o f  the  di f ferent  par t ic les  

b u t  it does  n o t  show the  m a i n  symmet r i e s  o f  each  type  o f  field in  the  c leares t  
form.  In  o rde r  to do  so, we wil l  first d iscuss  the  s p a c e - t i m e  symmet r i e s  o f  

d 
the  g a u g e d  fields s h o w n  in  Tab l e  II  g en e ra t ed  by  the  q u a n t u m  n u m b e r s  t~, 

( a n d  n) .  
O n e  s h o u l d  keep  in  m i n d  tha t  the Loren tz  t r a n s f o r m a t i o n s  La preserve  

the  m u l t i v e c t o r  charac te r ;  in  each  of  the  di f ferent  t e rms  m-vec tors  are 
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mapped by S( into m-vectors, even if the "components"  changes in the 
usual way; then the equations (48) are multivector form invariant. This can 
be used to explore their symmetries. The same is true under spatial rotations. 

For the quarklike diracons a more symmetric formulation can be given 
if the spatial coordinates are transformed in such a way that the local 
direction of motion y~ of the particle is defined to be y~ = (y~ + y2+ y3)/v~ 
and the notation o y~ =- iysy.  is used in such a way that we can explicitly 
exhibit the vector-(imaginary) axial vector momentum admixture and show 
that it is constant for each color of the diracon field. 

Let us write in detail the energy momentum multivector p of every 
diracon field, including the different "colors" d red (r), blue (b), or green 
(g) of the quarks, according to formula (49) and Table II: 

electron e: Pe =P~ + Y2 + 73)/"f~ 

P~ = P~ + 3/2 + 73)/x/3 

quark tT: pb 
g 

Pa 

quark d: pb 

p~ 

neutrino ~: p~ 

=p~ q + y2~ ~/3)/-v/3 

=p~ + 3'2+ 73~ 

=p~ + ~/2D+ 7~)/x/3 

= P~ + P~( V~ ~ + V2 + 3'3~ 

= p%/o+p~176 + V2~ V3)/x/3 

=p~ pV(v~~ + ~,2~ + V3D)/x/~ 

(54) 

Here pV is the three-momentum and pO is the energy. We can see that the 
...) D energy-momentum vectors are all in different phases of the p~, p~, rotations. 

Let us now consider a gauge energy-momentum vector field A " %  added 
to the diracon fields with coupling constant Qe; we find that, in order to 
modify the vector part of the momentum in an amount similar to that for 
an electron, with the energy-momentum components given in the same 
proportion to the time part and to the spacial parts (calling ya a vector 
perpendicular to the direction of motion Yv) for the electron 

p,= (pO+ QeAO) yo + (p~ + QeA~)% + QeA•177 

Yo " P' =pO+ QeA o 

% - p : = p ~ + Q e A  ~ 

Yi " P '=  QeA • 

(55) 

has components: 

timelike 

spacelike parallel 

spacelike perpendicular 

all of  them scalar quantities. 
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However, for a t~ quark (taking, for example, a red quark, the result 
being invariant with respect to color) 

1 1 2 1 
To" T~a = ~  (Yl+ T2+ T3)" ~ (Yl~ Tz+ T3) = ~ + ~  i3'5 (56) 

the scalar components will be affected by a factor of 2/3, for a down quark 
by a factor of 1/3, and for a neutrino by a factor 0. 

Then if we make the obvious definition that only the scalar part of the 
gauge field, which can be treated on an equal basis for the electrons and 
for the quarks or the neutrino, is to be considered the gauge field A, the 
"charges" have to be Qe, ~Qe, ~Q~, and 0, respectively. The pseudoscalar 
i75 parts are to be treated on a different basis, and will be shown to 
correspond to the weak and color interactions. 

In the full Lagrangian, to be introduced and discussed below, a first 
term equivalent to the standard Dirac matter-field Lagrangian 

~ , ,  -~ it~D~ 3/~'~ (57) 

is to be replaced bY the corresponding expression for diracons: 

~ -- i~a~ 7~ ~' (58) 

It is in this term of the Lagrangian where we have to introduce an 
electromagnetic [scalar part of ~b in (36)] gauging with a coefficient e for 
the electron field, 2e/3 for the (anti) up quark field, e/3 for the down quark 
field, and 0 for the neutrino field. Then in the gauge theory we are construct- 
ing, the charges for the U(1) part of the gauge fields are the (postulated 
usually) integer, fractional, or zero values of the standard theory. In general 
ouLmethod will allow us to develop a gauge theory instead of postulating 
it, as in the standard approaches. In this form we are showing the physical 
origin of the various couplings of the gauge fields, and the role played by 
iT5 in it, as a part of the symmetry-constrained Dirac particle theory. 

For this purpose the A field discussed above will have to be split into 
contributions, usually called B and W a in the literature, and new "charges" 
T 3 and Y are introduced with the standard notation 

Q = T3q - Y / 2  (59) 

but the assignment of T 3 and Y to give our values of Q will be straightfor- 
ward and its physical origin clear. 

It is convenient to start with a rearrangement of a diracon field in 
groups which will show an explicit SU(2)x SU(3)c  spin(8) symmetry as 
shown in Table II. 
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To start, we explore the SU(2) relations; for each given family we can 
see that the addition of a set of symmetry coefficients { W-} = (0, - 1, - 1, - 1), 
modulus -2 ,  to the first row produces the last row and their addition to 
any one of  the first group of three up quark fields produces one of the 
group of three down quark fields. That is: the same chiral phase change 
that takes the neutrino field into a left electron field will change an up quark 
into a down quark. The reverse process proceeds in the corresponding way. 
The "neutral"  interaction will arise from a change in the phase of  one of 
the partner fields canceling that of the change of the other. 

In the language of  bilinear spinor operators described before we could 
write all these processes in terms of spinors: if {X~,, X,,, Xd, ) ( e }  = )(.a represent 
the neutrino, up quark, down quark, and electron fields, respectively, and 

c t t ~ t their respective dual fields are tX~,, Xu ,  X d ,  X~e} = X~, with the orthogonality 
condition X t X b  = 6~b, then the processes above can be described: 

~r - t t = w (XeX, ,+XdX~)  (60a) 

IPV + = w+(x,,x*~ + XuXtd) (60b) 

and the neutral interaction (to be combined with the electromagnetic) 

l~g 3 = w3�89 l#g + ~/- - l~g- TW +) (60c) 

provided that in all cases the spins of each spinor operator of the product 
are opposite,  i.e., that the spin of the electron field created is opposite to 
that of the neutrino field annihilated, etc. These processes correspond to 
vector interactions with total spin one, equal to the change in spin of  the 
field during the interaction. 

What we will show below is the correspondence between the interaction 
fields and each product of  an interaction operator, written here in a formal 
way. We should add at this stage that, besides spin, energy-momentum is 
being exchanged during the interaction, for example, a photon interacting 
with an electron with energy-momentum exchange q could be written 

= ~ X~(p+q,•177 (61) 
p 

stating that the electromagnetic interaction annihilates an electron of 
momentum p and spin component s and creates an electron of momentum 
p + q and of opposite spin. 

The color interaction will change one of the spacelike t a indexes of 
the quarks from the value 1 to 0 and produce a value 1 for one of the other 
indexes (which was zero previously), or change the axial vector momentum 
of  two of  those indexes simultaneously to a total of the eight operations 
{1->2, 1->3, 2->3, 2-> 1, 3-> 1, 3->2, 11-->22, 22->33} corresponding to the 



796 Keller 

SU(3) color symmetry; we can also write these results in a formal operator 
way if we add a color subindex to the quark fields; then 

G a b .  ~ "~ ~ r Xo, aXq, b (62) 

will correspond to a gluonic interaction changing color b into color a. 
All these interactions in our diracon fields and in our chiral phase 

language correspond to a change in the wave function 

4'd = U exp(p  a. x + 05~) = u exp(05a) (63) 

with u a spinor and the de Broglie phases 05d the scalar --> pseudoscalar 
parts of  the products of  the momenta  [given by equations (58)] with the 
vector x. The de Broglie phases gauged by the 050 also contain scalar and 
pseudoscalar parts. For the leptons the de Broglie phases are 

05electron =p"x ,  + 050 (64) 

05neutrino = pOXo'~ iyspkxk + q 5~ k = 1, 2, 3 (65) 

The spinor u for the electron can be left- or right-handed; for the 
neutrino, in order to satisfy equation (48) only the left-handed field is 
possible. 

For the quarks, in order to preserve rotational symmetry, we need to 
show explicitly the gauge phase 05~ ensuring that the overall de Broglie 
phase is space-symmetric. This requires a complicated vector notation. If  
a space index is k (with values 1, 2, 3), a reference space index is r = 1, 2, 3 
and a color index is a or b (with v~tlues r, b, g), a set of three multivectors 
(vector + i axial vector, i = q~-2-[), 

ek . . . . . . .  _ ck y~, ck = cos Wrk [COS(~rt~/2) + iy5 sin(~'t~/2)] (66) 

for each color a of a given quark, direction k in space, and quantum number 
tr ~ in Table II  for reference space direction r, this reference space direction 
at an angle wrk with the observer's space coordinates k. This is a more 
general notation than that of  equation (54), where, for simplicity, the particle 
was taken to move in a direction with all cos w,v = 1/,f3. The c~, ~ are then 
the sum of a scalar and (i times) a pseudoscalar. 

For the purpose of our formalism we need a duality-symmetric set of  
ar C k  d - b k  the ordinary cosine directors coefficients b k such that on a~ = COS tOrk, 

(no axial vector mixing). 
In terms of the multivectors (66) the de Broglie phases for the quarks 

a r e  

o ar k ar k 0 
up quark 05u,~ =P Xo+Ck p X r + b k  05 Xr+05u, a (67) 

br k br k 0 down quark 05a, b=p~ xr+bk 05 X~+05d, b (68) 

The constants c~ r are different for up quarks and for down quarks, corre- 
sponding to the t~ quantum numbers. 
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Now, the phase angles ~o can either change the scalar-pseudoscalar 
structure of the de Broglie phases or leave them with the same structure. 
In the first case we have a change of the particle's nature (the resulting 
wave function will obey a different wave equation), and in the second case 
we have a type-conserving interaction. For this purpose we construct a 
Lagrangian which is invariant to the changes of the phase structure of the 
different ~bd = p~ x~ + ~b ~ shown above. We do this here using matrix notation 
for isospin to conform to the usual expressions of the standard theory. 

We have two options: either we put all eight (left-handed) fields together 
in a column isospin matrix and show the pair of fields connected by SU(2) 
symmetries and the triad of fields corresponding to SU(3)color interactions, 
or construct directly the SU(2) doublets and the SU(3) triplets. The first 
possibility is the more physical one (Keller, 1985), although it requires a 
less familiar and more elaborate notation. The second one shows the 
symmetries in their clearest form and conforms to most current papers; for 
this reason we will use it here, at the expense of writing more terms in the 
Lagrangian. 

First we need to state clearly that for each term ~b ~ in the phase angles 
in (63) we need to add a term - g B  in the (covariant) derivative, as usual 
in gauge theory, and a kinetic energy term ~ B  ~ for the gauge field B, 
again in the usual way. But what is new in our approach is that if the gauge 
angles in (63) change the scalar-pseudoscalar structure of 0d, then the d 
field has been transformed into a new field, say d'; then in the Lagrangian 
the covariant derivative term will acquire an index a = 1 , . . .  , N 2 - 1 ,  
indicating ttiat it corresponds to an S U ( N )  type-changing interaction field 
and it will appear in the covariant derivative and in the Lagrangian multi- 
plied by an S U ( N )  matrix Ta; then - g B  ~ - g B a T a .  The representation of 
the T~ matrices required here is the isospin (or color) step-up or step-down 
form. 

Let us illustrate this for the electron-neutrino left-handed pair. We 
start with the definition of the SU(2) isospin pair and its kinetic energy 
Lagrangian density 

and, in order to make it gauge invariant, we transform the kinetic energy 
operator into the standard covariant derivative 

- g W 3  - ~ g  B ) 
K w,y = g y .  W e  y .  (iO" + g W ~  - �89 

= y~ (ilO ~ - g W ~  T ~ - g' YB  ~') (70) 
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with T a 1 a r .  = ~ 7 ,  the being the Pauli matrices, and Y a charge matrix; to 
obtain'the SU(2) gauge-invariant Lagrangian density 

~K,L = LKwL (71) 

The Lagrangian density (71) will have three contributions, ~LeL--~LPL, 
f~L(W+)eL, and eL(W--)VL, which have some special properties: the first 
term is a concerted scattering where the energy-momentum given to one of 
the leptons is withdrawn from the other; the second asserts that (W§ 
behaves like a neutrino, and the third that (W_) VL behaves like a (left-handed 
part of an) electron. In the diracon theory we can immediately keep the 
definition of L, but in principle it was not needed to state that the neutrino 
was left-handed, because it must be left-handed to obey its wave equation. 
The kinetic energy operator is slightly changed through the use of the 
substitution %,-* yd = ad(/~).yg defined in (46) to read for free fields 

/ i  (~)O ~ 0 \ 
,r. 0"} (72) 

before it is explicitly made gauge invariant, and the SU(2) part in the 
diracon theory 

"gt~ (lc~ - g W 3 )  -y.[a(~)(lx)p~-a(~)(lx)p~]~ I w= y.(a(e)(ix)pf-a(~)(tx)p~) y~)(iO"+gW~) ] (73) 

Here again, in the notation of our formalism, we have the following 
concerted interactions: the "neutral" interaction where the moment given 
to the electron field ( -gW~y~)  cancels that given to the neutrino field; the 
"positively charged" interaction [a(~)(/z)p~- a(e)(/x)p~] where an electron 
of initial moment p~%, appears in the final state as a neutrino field momen- 
tum a(~)(~)p~7,; and, finally, the reciprocal, "negatively" charged interac- 
tion where the initial state is a neutrino and the final state is an electron. 
All this is through changes in the vector-axial vector coefficients a a (tz)%,. 
The equivalence of (73) and (70) is immediate if we now apply both to the 
L wave function, which is an eigenfunction of i75 [or equivalently of the 
aa(/z)]: --ad(~)L = L. 

We finally obtain, as expected, the equivalence 

gW~_=(p~-p~)(O0 10) and gW~=(p~-p~)(~ ~) (74) 

A similar procedure transforms a set of three colors of a quark field 
among themselves. Again it is advantageous to write the representation of 
SU(3)~o~o~ in the eight (step up, step down, and color neutral interactions) 
between the three pairs of colors r-b, r-g, and b-g. 
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Our procedure has been the following: (1) write the phase angles of 
the de Broglie phases [equation (53)], (2) introduce a covariant derivative 
for each component of the gauge phase angles [equation (52)], and (3) 
write the concerted pairs (or trios) of particle fields in the form of isospin 
or color multiplets, with the corresponding electroweak and color charges. 

The compiete Lagrangian density is 

(75) 

with 

~=f_ ,KwL+f~Ry"[ iO~, -g 'B~]O~,~+fJ ) ,~ ( - �89  (76) 

~ s  _ l u  u~" (77) 

~ w  1 = - ~ W ~  �9 W ~ (78) 

. . . .  = --Ge ( f~d)h die n - -  ~eR t~ th L )  (79) 

+ [(iO. - gT"  W -  g' YB~./2)&[ 2 -  V(~b) 

.~q  = O I ( W , Y ,  G q - - 1 6 . v  " 6 "au (80) 

where we have introduced the kinetic energies of the gauge fields, the Higgs 
fields discussed below, and the short-hand /s for the kinetic energy 
term of the quarks with weak, U(1), and color interactions: 

l Ix po - -  - -  
P u d r  Pur P u r b  eu~rg " 

P~ubr P,,~b P~bg - -  P~udb - -  
la, 

P E r -  - -  P ~  P~rb P~rg 
- -  P ~ u b  - -  P~br P~b P~bg 

/(w,Y,G = Y~ =yj~P~ (81) 

Here we have used, for the gauged momenta of color a quark q, 

po _ iaqa( /x )O~_gT3qW~ x , ~ -- --~g YqB - g o G ~  

with the definition 

(82) 

Qq = T3q+ Yq/2  (83) 

For the color interaction between like quarks of colors a and b with initial 
momenta Pi and final momenta P.c, 

P~ab = aq,~ (tz )p 2 - aqb(tz )p~ (84) 
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And for the weak interaction between quarks of types q and q' corresponding 
to the same color a 

P~q.a = aq,~ (tz )p~ -aq,~ (tz )p~ (85) 

Other interactions, for example, simultaneous color and type change, 
are not included here, for simplicity, but this kind of q-q '  scattering can 
occur as a higher order process and represented here as a set of two more 
entries in the matrix (81). 

Again, as in the case of leptons, the identification of the standard W~, 
W~, and G~b fields can be done once the result of operating with aqa (~) 
on the wave function ~bqa is known. 

The need of a colorless combination c of quarks in order to make 
~quark rotation invariant imposes a bound state between quarks adding up 
to c = a~ or c = r + b + g, that is, either 

aqa (/x)p~ + aqa (/z)p~ = cos ~b~p ~' (86) 

for a meson state, or 

aq, r (I.L )p~ + qq2b(I.~ )p~ + aq3q(I.~ )p ~3 = COS ~b~p ~ (87) 

for a baryon, showing that the momenta of the component quarks are not 
independent at any time. The hadron's momenta include the gluon momenta, 
which in turn, as shown in (84), depend on the quark momenta, the situation 
being very complex because the gluon-gluon interaction is to be included, 
as discussed in quantum chromodynamics. The intensity of the gluon fields 
are then fixed by the requirements of colorless elementary composite parti- 
cles, the hadrons, and because this intensity is given by the gauge field 
equations relating it to the sources; this in turn generates a distance 
parameter, the size of the hadron or equivalently the range of the gluon 
field, which ensures that the hadron can be considered colorless (Keller, 
1984). 

There are then two types of elementary particles: the quanta of the 
lepton fields and the composite elementary particles, the hadrons, which 
are composite but cannot be divided without rotational symmetry being 
violated. 

Equations (84) and (85) show explicitly the role of chiral symmetry in 
generating color, charge, and weak charge. 

To understand the structure of the ~mass Lagrangian, we must recall 
that the y ,  anticommute with iYs; for this reason the gradient operator 
changes a right (left)-handed field into a left (right)-handed field. 

Then we have as the only choice for the neutrino left-handed field 

0c% y .  ~ = 0 (88) 
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but for the electron field we have the more general possibility of relating 
the left- and right-handed fields 

y~ O~q~eL = mei~ and y~ 0~eR = mei~ (89) 

Then the possibility of the existence of  both (free) left- and right-handed 
electron fields allows the introduction of a new (mass) parameter, thus 
breaking the SU(2) symmetry between the electron and the neutrino. 

The expectancy value of 3'0 is the overlap of left-handed and right- 
handed components, so 0+y0 ~ is proportional to the mass which the field 
can acquire. A common normalization is ~0 = 2m. This is clearly seen in 
the Weyl representation of the y, .  

We have here a new type of gauge freedom where a combination of 
left- and right-handed fields can be mapped into itself. In the case of bound 
particles (always the case of  quarks) the distinction between left-handed 
and right-handed fields vanishes because of the presence of  the interaction 
fields in the momentum operator; besides, the kinetic energy of the particle 
and of the gauge field (gluons, etc.) will have to be added to the center-of- 
mass (rest) energy of the composite particle (proton, meson, etc.). 

The Higgs mechanism has to be chosen to express (88) and (89) in 
(79) because the left- and right-handed fields are independent and for the 
obvious reason that it also explains the masses of the W within the Glashow- 
Weinberg-Salam theory. 

In order to proceed with the discussion of the correspondence 
with the standard U(1) x S U ( 2 )  x SU(3) color-electroweak interaction 
(Greenberg, 1982; Fritzch and Minkowski, 1984; Georgi and Glashow, 
1974; Georgi, 1975; Salam, 1968; Weinberg, 1967), we need to identify the 
scalar Higgs field. This is easier if we first write it in a formal, spin operator 
way. All the interactions above were required to simultaneously change the 
spin of  the interacting particles, but we can also construct new interaction 
operators with the (opposite) requirement that the spin is conserved during 
the interaction, 

121 = hff',~f,,,~ *f,,s (90) 

Here the operator H will change the initial field into the final field with 
the same spin, but f and f '  need not be the same. Then the opera tor /~  will 
carry a new isospin I, equal to I f, + I I, in the same way as the W operators 
above carried isospin or the G operators carried color. A neutrino-electron 
h, for example He~ and / ~ ,  will carry one unit of isospin; four of  those 
scalar operators can be constructed corresponding to the four pairs e~, v~, 
ee, vv. The last two have zero isospin, whereas the previous ones have -1  
or +1 isospin, respectively. This is the origin, within chiral geometry theory, 
of the isospin of the Higgs fields. Their expression in terms of our diracon 
field and their chiral phases are given by (90). 



802 Keller 

This scalar field will present an asymmetry with respect to the chiral 
set [spin(8)] of left-handed lepton and quark fields, because the electron 
field can be both left- and right-handed (eL and eR) and two terms will 
contribute in this case. Then the uncharged scalar, zero isospin, field will 
break the isospin symmetry among the scalar fields, due to the interaction 
between eL and eR. 

In the matrix notation above Xta = ( . . . .  X~,- . . )  is orthogonal by con- 
struction to Xd' if d ~ d'. But the existence of nondiagonal terms in the 
Lagrangian shows that they are not physically independent; their relation- 
ships are explicitly formulated in the theory. 

The Lagrangian (75) should be extended to include antiparticles. The 
particle-antiparticle formulation could look somewhat different for the 
electron field and for the neutrino or quark fields. We obtain the electron 
wave function from the even sum eL+ eR and the positron from the odd 
sum eL--eR;  we see that there is a difference of ~'/2 in the relative chiral 
phases determining the character of the fields. 

For the neutrino the phase difference is the same, but is usually given 
explicitly in the wave equation; for example, the positive energy solution 
of the neutrino, E = Ipl, satisfies 

~r. fix = -X (91) 

corresponding, then, to the left-handed field, and the antineutrino, E = -IP[, 
satisfies 

, , "  ( - ~ ) x  = x (92) 

and corresponds to a right-handed field. In both cases, for the particle- 
antiparticle, the change in phase is ~r/2 in the chiral plane ~0R ̂  qJL, and 
there is no basic difference. 

We end this section with two remarks about the geometrical interpreta- 
tion which has been generated. 

We first recall the notion of parity inversion P or space conjugation, 
consisting in the reversal of all the spacel ike  vectors of a multivector A; 
from the anticommutativity of the y~ 

~ '~0  "-) TO, P ' f k  -'-) --')/k ~-~ "YO )tk'YO (93) 

Then, in general 

P A  = y o A y o  = A e (94) 

and the notion of Hermitian conjugation, from (la) and (94) as product 
reversal plus parity inversion, gives 

At--- "Yo Ayo (95) 

[in the algebra defined in (23) parity inversion will change i into - i ] .  
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It is very important to understand the geometrical origin of the currents 
appearing in the Lagrangians (75). The normalization ~q, = q,*yo~b = 2m 
introduced above is the magnitude of a vector J~ = ~ y o q  ~ according to (34). 
For the system where the particle is at rest it is just two times the rest mass 
m of the particle and, because the Lorentz transformations are isometrics 
of the vector algebra, it is the value in any (observer's) system S. The 
components of  that vector in S are J~. y ,  or 

J ~ ' y ~  = - e ( ~ t y o ~ y ~ ) s  =-e(yo~*YoYoWYg)~ 

= - e ( ~ * y o  y~ ~)s  (96) 

where the subscript s stands for scalar part, and (95) has been used (see 
Hestenes, 1966, p. 44); premultiplying (96) by the unit dual (row) spinor 
u t and postmultiplying 
(conserved) current 

used in the Lagrangians. 

it by u, we obtain the usual definition of the 

j~ = -e(by~ ~O (97) 

We cart obtain a deeper geometrical insight if we analyze the example 
of the plane wave solutions F of the field intensities of the free Maxwell 
equations 

[] F = 0; F =fe  ~'Skx (98) 

the b ivec tor f  and the wave vector k being constant and obeying the equation 

k f =  kof; kyo = ko+k (99) 

ko being a scalar and k a space vector with the conditions k0 = +[kl, obtained 
by multiplying (99) by ko+k. If we apply to (99) the partity operation, f 
is transformed into fP  obeying 

kof  P = - k f  P (100) 

showing that f and fP  behave as photon fields with the same energy and 
opposite momenta. On writing f = e + Y5 b, where e and b are space vectors, 
we have that equation (99) corresponds to koe= yskb and k o b = - y s k e ,  
showing that k, e, and b are mutually perpendicular, e 2= b 2, and e �9 b = 0. 
The factor e ~'skx in (98) shows that e ~nd b are rotating into each other 
with a phase angle ~b = k.  x and that in the free field f t ,  the rotation takes 
place in the opposite sense ~b P=  -~b = - k . x ,  corresponding to the two 
possibilities of circularly polarized light. For the photon field p = hk  is the 
linear momentum; then we find again that the de Broglie phase ~b = p -  x~ h 
corresponds to a duality rotation. The electromagnetic field, as in fact all 
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gauge fields in our theory, adjusts the phases of the duality rotations between 
accelerated charged particles when photons are emitted or absorbed or 
when a particle is to be described in reference to other charged particles. 

5. S U M M A R Y  

We have given a self-consistent presentation of the motivation, formal- 
ism, and development of the theory of symmetry-constrained Dirac particles 
(diracons). Several approaches have been combined in the theory: the 
mathematical framework of the Clifford-Grassmann algebra of spinors and 
multiveetors, the geometrical interpretation of the de Broglie phase p. x~ h, 
the multivector formulation of the Dirac equation, the generalization of the 
Dirac "square root" procedure valued in the space-time complex multivec- 
tor algebra where the vector-axial vector duality is explicitly included, and, 
finally, the gauging of individual fields and the collections of diracon fields 
to show the chiral origin of isospin and color. The Higgs field, carrying 
isospin in the sense here introduced, appears as a spin-conserving interaction 
connecting pairs of diracon fields; in particular, left-handed (eL) and right- 
handed (en) fields produce a composite field ( e - =  eR + eL or e §  e a -  eL) 
where it is possible to "cancel" the spacelike momentum and obtain a 
particle at rest with rest mass m. The Higgs fields are therefore the result 
of the possibility of formulating a Lagrangian term which is invariant to 
rotations in the abstract left chirality-right chirality plane (these rotations 
are generated by iTi23 in the multivector Clifford algebra of space-time). 

From the three types of fields we have discussed so far only the first 
and the third could be observed as free fields: massless neutrinos or massive 
electrons. The second type, the quarks, will break rotational invariance. But 
if we demand that we will only work with a composite field where a 
combination of particles of the quark type is made such that the group is 
no longer rotational symmetry-breaking, then this second type of field may 
also be observed as a free composite field. 

We arrive then at a new concept. Ordinary composite particles, such 
as atoms and nuclei, can be split, when energy is available, into smaller 
components,  whereas the composite elementary particles cannot, even if 
enough energy were available, unless a quark and antiquark are simul- 
taneously created to restore rotational symmetry. This new type of particle, 
which, of course, corresponds to hadrons, will require, in order to preserve 
Lorentz and rotational symmetry, that three quarks (or a quark-antiquark 
pair) be together, as a minimum, in a small volume of space where there 
should be some coherence among the three quarks. This gives rise to a new 
type of interaction where each quark is constantly related to the other two 
in such a way that no particular "color" can be singled out. To achieve this 
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we need to associate each quark to a number of quanta of a symmetry- 
constrained gauge field with the complementary colors, gluons, all together 
adding up to the hadron's mass. 

We remark in concluding that the theory of diracons offers enough 
possibilities to provide a basis for the study of elementary particles and 
their interaction fields within the frame of physical space-time. 
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